1 - How to encode/decode quantileTDigest states from/to list of centroids

A way to export or import quantileTDigest states from/into ClickHouse®

quantileTDigestState

quantileTDigestState is stored in two parts: a count of centroids in LEB128 format + list of centroids without a delimiter. Each centroid is represented as two Float32 values: Mean & Count.

SELECT
    hex(quantileTDigestState(1)),
    hex(toFloat32(1))

┌─hex(quantileTDigestState(1))─┬─hex(toFloat32(1))─┐
 010000803F0000803F            0000803F          
└──────────────────────────────┴───────────────────┘
  01          0000803F      0000803F
  ^           ^             ^
  LEB128      Float32 Mean  Float32 Count

We need to make two helper UDF functions:

cat /etc/clickhouse-server/decodeTDigestState_function.xml
<yandex>
  <function>
    <type>executable</type>
    <execute_direct>0</execute_direct>
    <name>decodeTDigestState</name>
    <return_type>Array(Tuple(mean Float32, count Float32))</return_type>
    <argument>
      <type>AggregateFunction(quantileTDigest, UInt32)</type>
    </argument>
    <format>RowBinary</format>
    <command>cat</command>
    <send_chunk_header>0</send_chunk_header>
  </function>
</yandex>

cat /etc/clickhouse-server/encodeTDigestState_function.xml
<yandex>
  <function>
    <type>executable</type>
    <execute_direct>0</execute_direct>
    <name>encodeTDigestState</name>
    <return_type>AggregateFunction(quantileTDigest, UInt32)</return_type>
    <argument>
      <type>Array(Tuple(mean Float32, count Float32))</type>
    </argument>
    <format>RowBinary</format>
    <command>cat</command>
    <send_chunk_header>0</send_chunk_header>
  </function>
</yandex>

Those UDF – (encode/decode)TDigestState converts TDigestState to the Array(Tuple(Float32, Float32)) and back.

SELECT quantileTDigest(CAST(number, 'UInt32')) AS result
FROM numbers(10)

┌─result─┐
      4 
└────────┘

SELECT decodeTDigestState(quantileTDigestState(CAST(number, 'UInt32'))) AS state
FROM numbers(10)

┌─state─────────────────────────────────────────────────────────┐
 [(0,1),(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(9,1)] 
└───────────────────────────────────────────────────────────────┘

SELECT finalizeAggregation(encodeTDigestState(CAST('[(0,1),(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(9,1)]', 'Array(Tuple(Float32, Float32))'))) AS result

┌─result─┐
      4 
└────────┘

2 - kurt & skew statistical functions in ClickHouse®

How to make them return the same result like python scipy
from scipy.stats import skew, kurtosis

# Creating a dataset

dataset = [10,17,71,6,55,38,27,61,48,46,21,38,2,67,35,77,29,31,27,67,81,82,75,81,31,38,68,95,37,34,65,59,81,28,82,80,35,3,97,42,66,28,85,98,45,15,41,61,24,53,97,86,5,65,84,18,9,32,46,52,69,44,78,98,61,64,26,11,3,19,0,90,28,72,47,8,0,74,38,63,88,43,81,61,34,24,37,53,79,72,5,77,58,3,61,56,1,3,5,61]

print(skew(dataset, axis=0, bias=True), skew(dataset))

# -0.05785361619432152 -0.05785361619432152
WITH arrayJoin([10,17,71,6,55,38,27,61,48,46,21,38,2,67,35,77,29,31,27,67,81,82,75,81,31,38,68,95,37,34,65,59,81,28,82,80,35,3,97,42,66,28,85,98,45,15,41,61,24,53,97,86,5,65,84,18,9,32,46,52,69,44,78,98,61,64,26,11,3,19,0,90,28,72,47,8,0,74,38,63,88,43,81,61,34,24,37,53,79,72,5,77,58,3,61,56,1,3,5,61]) AS value
SELECT skewPop(value) AS ex_1

┌──────────────────ex_1─┐
 -0.057853616194321014 
└───────────────────────┘
print(skew(dataset, bias=False))

# -0.05873838908626328
WITH arrayJoin([10, 17, 71, 6, 55, 38, 27, 61, 48, 46, 21, 38, 2, 67, 35, 77, 29, 31, 27, 67, 81, 82, 75, 81, 31, 38, 68, 95, 37, 34, 65, 59, 81, 28, 82, 80, 35, 3, 97, 42, 66, 28, 85, 98, 45, 15, 41, 61, 24, 53, 97, 86, 5, 65, 84, 18, 9, 32, 46, 52, 69, 44, 78, 98, 61, 64, 26, 11, 3, 19, 0, 90, 28, 72, 47, 8, 0, 74, 38, 63, 88, 43, 81, 61, 34, 24, 37, 53, 79, 72, 5, 77, 58, 3, 61, 56, 1, 3, 5, 61]) AS value
SELECT
    skewSamp(value) AS ex_1,
    (pow(count(), 2) * ex_1) / ((count() - 1) * (count() - 2)) AS G

┌─────────────────ex_1─┬────────────────────G─┐
 -0.05698798509149213  -0.05873838908626276 
└──────────────────────┴──────────────────────┘
print(kurtosis(dataset, bias=True, fisher=False), kurtosis(dataset, bias=True, fisher=True), kurtosis(dataset))

# 1.9020275610791184 -1.0979724389208816 -1.0979724389208816
WITH arrayJoin([10, 17, 71, 6, 55, 38, 27, 61, 48, 46, 21, 38, 2, 67, 35, 77, 29, 31, 27, 67, 81, 82, 75, 81, 31, 38, 68, 95, 37, 34, 65, 59, 81, 28, 82, 80, 35, 3, 97, 42, 66, 28, 85, 98, 45, 15, 41, 61, 24, 53, 97, 86, 5, 65, 84, 18, 9, 32, 46, 52, 69, 44, 78, 98, 61, 64, 26, 11, 3, 19, 0, 90, 28, 72, 47, 8, 0, 74, 38, 63, 88, 43, 81, 61, 34, 24, 37, 53, 79, 72, 5, 77, 58, 3, 61, 56, 1, 3, 5, 61]) AS value
SELECT
    kurtPop(value) AS pearson,
    pearson - 3 AS fisher

┌────────────pearson─┬──────────────fisher─┐
 1.9020275610791124  -1.0979724389208876 
└────────────────────┴─────────────────────┘
print(kurtosis(dataset, bias=False))

# -1.0924286152713967
WITH arrayJoin([10, 17, 71, 6, 55, 38, 27, 61, 48, 46, 21, 38, 2, 67, 35, 77, 29, 31, 27, 67, 81, 82, 75, 81, 31, 38, 68, 95, 37, 34, 65, 59, 81, 28, 82, 80, 35, 3, 97, 42, 66, 28, 85, 98, 45, 15, 41, 61, 24, 53, 97, 86, 5, 65, 84, 18, 9, 32, 46, 52, 69, 44, 78, 98, 61, 64, 26, 11, 3, 19, 0, 90, 28, 72, 47, 8, 0, 74, 38, 63, 88, 43, 81, 61, 34, 24, 37, 53, 79, 72, 5, 77, 58, 3, 61, 56, 1, 3, 5, 61]) AS value
SELECT
    kurtSamp(value) AS ex_1,
    (((pow(count(), 2) * (count() + 1)) / (((count() - 1) * (count() - 2)) * (count() - 3))) * ex_1) - ((3 * pow(count() - 1, 2)) / ((count() - 2) * (count() - 3))) AS G

┌──────────────ex_1─┬───────────────────G─┐
 1.864177212613638  -1.0924286152714027 
└───────────────────┴─────────────────────┘

Google Collab

3 - -Resample vs -If vs -Map vs Subquery

5 categories

SELECT sumResample(0, 5, 1)(number, number % 5) AS sum
FROM numbers_mt(1000000000)

┌─sum───────────────────────────────────────────────────────────────────────────────────────────┐
 [99999999500000000,99999999700000000,99999999900000000,100000000100000000,100000000300000000] 
└───────────────────────────────────────────────────────────────────────────────────────────────┘

1 rows in set. Elapsed: 1.010 sec. Processed 1.00 billion rows, 8.00 GB (990.20 million rows/s., 7.92 GB/s.)


SELECT sumMap([number % 5], [number]) AS sum
FROM numbers_mt(1000000000)

┌─sum─────────────────────────────────────────────────────────────────────────────────────────────────────────┐
 ([0,1,2,3,4],[99999999500000000,99999999700000000,99999999900000000,100000000100000000,100000000300000000]) 
└─────────────────────────────────────────────────────────────────────────────────────────────────────────────┘

1 rows in set. Elapsed: 5.730 sec. Processed 1.00 billion rows, 8.00 GB (174.51 million rows/s., 1.40 GB/s.)

SELECT sumMap(map(number % 5, number)) AS sum
FROM numbers_mt(1000000000)

┌─sum─────────────────────────────────────────────────────────────────────────────────────────────────────┐
 {0:99999999500000000,1:99999999700000000,2:99999999900000000,3:100000000100000000,4:100000000300000000} 
└─────────────────────────────────────────────────────────────────────────────────────────────────────────┘

1 rows in set. Elapsed: 4.169 sec. Processed 1.00 billion rows, 8.00 GB (239.89 million rows/s., 1.92 GB/s.)

SELECT
    sumIf(number, (number % 5) = 0) AS sum_0,
    sumIf(number, (number % 5) = 1) AS sum_1,
    sumIf(number, (number % 5) = 2) AS sum_2,
    sumIf(number, (number % 5) = 3) AS sum_3,
    sumIf(number, (number % 5) = 4) AS sum_4
FROM numbers_mt(1000000000)

┌─────────────sum_0─┬─────────────sum_1─┬─────────────sum_2─┬──────────────sum_3─┬──────────────sum_4─┐
 99999999500000000  99999999700000000  99999999900000000  100000000100000000  100000000300000000 
└───────────────────┴───────────────────┴───────────────────┴────────────────────┴────────────────────┘

1 rows in set. Elapsed: 0.762 sec. Processed 1.00 billion rows, 8.00 GB (1.31 billion rows/s., 10.50 GB/s.)

SELECT sumMap([id], [sum]) AS sum
FROM
(
    SELECT
        number % 5 AS id,
        sum(number) AS sum
    FROM numbers_mt(1000000000)
    GROUP BY id
)

┌─sum─────────────────────────────────────────────────────────────────────────────────────────────────────────┐
 ([0,1,2,3,4],[99999999500000000,99999999700000000,99999999900000000,100000000100000000,100000000300000000]) 
└─────────────────────────────────────────────────────────────────────────────────────────────────────────────┘

1 rows in set. Elapsed: 0.331 sec. Processed 1.00 billion rows, 8.00 GB (3.02 billion rows/s., 24.15 GB/s.)

20 categories

SELECT sumResample(0, 20, 1)(number, number % 20) AS sum
FROM numbers_mt(1000000000)

1 rows in set. Elapsed: 1.056 sec. Processed 1.00 billion rows, 8.00 GB (947.28 million rows/s., 7.58 GB/s.)

SELECT sumMap([number % 20], [number]) AS sum
FROM numbers_mt(1000000000)

1 rows in set. Elapsed: 6.410 sec. Processed 1.00 billion rows, 8.00 GB (156.00 million rows/s., 1.25 GB/s.)

SELECT sumMap(map(number % 20, number)) AS sum
FROM numbers_mt(1000000000)

┌─sum────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┐
 {0:24999999500000000,1:24999999550000000,2:24999999600000000,3:24999999650000000,4:24999999700000000,5:24999999750000000,6:24999999800000000,7:24999999850000000,8:24999999900000000,9:24999999950000000,10:25000000000000000,11:25000000050000000,12:25000000100000000,13:25000000150000000,14:25000000200000000,15:25000000250000000,16:25000000300000000,17:25000000350000000,18:25000000400000000,19:25000000450000000} 
└────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘

1 rows in set. Elapsed: 4.629 sec. Processed 1.00 billion rows, 8.00 GB (216.04 million rows/s., 1.73 GB/s.)

SELECT
    sumIf(number, (number % 5) = 0) AS sum_0,
    sumIf(number, (number % 5) = 1) AS sum_1,
    sumIf(number, (number % 5) = 2) AS sum_2,
    sumIf(number, (number % 5) = 3) AS sum_3,
    sumIf(number, (number % 5) = 4) AS sum_4,
    sumIf(number, (number % 5) = 5) AS sum_5,
    sumIf(number, (number % 5) = 6) AS sum_6,
    sumIf(number, (number % 5) = 7) AS sum_7,
    sumIf(number, (number % 5) = 8) AS sum_8,
    sumIf(number, (number % 5) = 9) AS sum_9,
    sumIf(number, (number % 5) = 10) AS sum_10,
    sumIf(number, (number % 5) = 11) AS sum_11,
    sumIf(number, (number % 5) = 12) AS sum_12,
    sumIf(number, (number % 5) = 13) AS sum_13,
    sumIf(number, (number % 5) = 14) AS sum_14,
    sumIf(number, (number % 5) = 15) AS sum_15,
    sumIf(number, (number % 5) = 16) AS sum_16,
    sumIf(number, (number % 5) = 17) AS sum_17,
    sumIf(number, (number % 5) = 18) AS sum_18,
    sumIf(number, (number % 5) = 19) AS sum_19
FROM numbers_mt(1000000000)

1 rows in set. Elapsed: 5.282 sec. Processed 1.00 billion rows, 8.00 GB (189.30 million rows/s., 1.51 GB/s.)

SELECT sumMap([id], [sum]) AS sum
FROM
(
    SELECT
        number % 20 AS id,
        sum(number) AS sum
    FROM numbers_mt(1000000000)
    GROUP BY id
)

1 rows in set. Elapsed: 0.362 sec. Processed 1.00 billion rows, 8.00 GB (2.76 billion rows/s., 22.10 GB/s.)

SELECT sumMap(map(id, sum)) AS sum
FROM
(
    SELECT
        number % 20 AS id,
        sum(number) AS sum
    FROM numbers_mt(1000000000)
    GROUP BY id
)

sumMapResample

It’s also possible to combine them.

SELECT
    day,
    category_id,
    sales
FROM
(
    SELECT sumMapResample(1, 31, 1)([category_id], [sales], day) AS res
    FROM
    (
        SELECT
            number % 31 AS day,
            100 * (number % 11) AS category_id,
            number AS sales
        FROM numbers(10000)
    )
)
ARRAY JOIN
    res.1 AS category_id,
    res.2 AS sales,
    arrayEnumerate(res.1) AS day

┌─day─┬─category_id──────────────────────────────────┬─sales──────────────────────────────────────────────────────────────────────────┐
   1  [0,100,200,300,400,500,600,700,800,900,1000]  [143869,148365,142970,147465,142071,146566,151155,145667,150225,144768,149295] 
   2  [0,100,200,300,400,500,600,700,800,900,1000]  [149325,143898,148395,142999,147494,142100,146595,151185,145696,150255,144797] 
   3  [0,100,200,300,400,500,600,700,800,900,1000]  [144826,149355,143927,148425,143028,147523,142129,146624,151215,145725,150285] 
   4  [0,100,200,300,400,500,600,700,800,900,1000]  [150315,144855,149385,143956,148455,143057,147552,142158,146653,151245,145754] 
   5  [0,100,200,300,400,500,600,700,800,900,1000]  [145783,150345,144884,149415,143985,148485,143086,147581,142187,146682,151275] 
   6  [0,100,200,300,400,500,600,700,800,900,1000]  [151305,145812,150375,144913,149445,144014,148515,143115,147610,142216,146711] 
   7  [0,100,200,300,400,500,600,700,800,900,1000]  [146740,151335,145841,150405,144942,149475,144043,148545,143144,147639,142245] 
   8  [0,100,200,300,400,500,600,700,800,900,1000]  [142274,146769,151365,145870,150435,144971,149505,144072,148575,143173,147668] 
   9  [0,100,200,300,400,500,600,700,800,900,1000]  [147697,142303,146798,151395,145899,150465,145000,149535,144101,148605,143202] 
  10  [0,100,200,300,400,500,600,700,800,900,1000]  [143231,147726,142332,146827,151425,145928,150495,145029,149565,144130,148635] 
  11  [0,100,200,300,400,500,600,700,800,900,1000]  [148665,143260,147755,142361,146856,151455,145957,150525,145058,149595,144159] 
  12  [0,100,200,300,400,500,600,700,800,900,1000]  [144188,148695,143289,147784,142390,146885,151485,145986,150555,145087,149625] 
  13  [0,100,200,300,400,500,600,700,800,900,1000]  [149655,144217,148725,143318,147813,142419,146914,151515,146015,150585,145116] 
  14  [0,100,200,300,400,500,600,700,800,900,1000]  [145145,149685,144246,148755,143347,147842,142448,146943,151545,146044,150615] 
  15  [0,100,200,300,400,500,600,700,800,900,1000]  [150645,145174,149715,144275,148785,143376,147871,142477,146972,151575,146073] 
  16  [0,100,200,300,400,500,600,700,800,900,1000]  [146102,150675,145203,149745,144304,148815,143405,147900,142506,147001,151605] 
  17  [0,100,200,300,400,500,600,700,800,900,1000]  [151635,146131,150705,145232,149775,144333,148845,143434,147929,142535,147030] 
  18  [0,100,200,300,400,500,600,700,800,900,1000]  [147059,141665,146160,150735,145261,149805,144362,148875,143463,147958,142564] 
  19  [0,100,200,300,400,500,600,700,800,900,1000]  [142593,147088,141694,146189,150765,145290,149835,144391,148905,143492,147987] 
  20  [0,100,200,300,400,500,600,700,800,900,1000]  [148016,142622,147117,141723,146218,150795,145319,149865,144420,148935,143521] 
  21  [0,100,200,300,400,500,600,700,800,900,1000]  [143550,148045,142651,147146,141752,146247,150825,145348,149895,144449,148965] 
  22  [0,100,200,300,400,500,600,700,800,900,1000]  [148995,143579,148074,142680,147175,141781,146276,150855,145377,149925,144478] 
  23  [0,100,200,300,400,500,600,700,800,900,1000]  [144507,149025,143608,148103,142709,147204,141810,146305,150885,145406,149955] 
  24  [0,100,200,300,400,500,600,700,800,900,1000]  [149985,144536,149055,143637,148132,142738,147233,141839,146334,150915,145435] 
  25  [0,100,200,300,400,500,600,700,800,900,1000]  [145464,150015,144565,149085,143666,148161,142767,147262,141868,146363,150945] 
  26  [0,100,200,300,400,500,600,700,800,900,1000]  [150975,145493,150045,144594,149115,143695,148190,142796,147291,141897,146392] 
  27  [0,100,200,300,400,500,600,700,800,900,1000]  [146421,151005,145522,150075,144623,149145,143724,148219,142825,147320,141926] 
  28  [0,100,200,300,400,500,600,700,800,900,1000]  [141955,146450,151035,145551,150105,144652,149175,143753,148248,142854,147349] 
  29  [0,100,200,300,400,500,600,700,800,900,1000]  [147378,141984,146479,151065,145580,150135,144681,149205,143782,148277,142883] 
  30  [0,100,200,300,400,500,600,700,800,900,1000]  [142912,147407,142013,146508,151095,145609,150165,144710,149235,143811,148306] 
└─────┴──────────────────────────────────────────────┴────────────────────────────────────────────────────────────────────────────────┘

4 - arrayFold

EWMA example

WITH
    [40, 45, 43, 31, 20] AS data,
    0.3 AS alpha
SELECT arrayFold((acc, x) -> arrayPushBack(acc, (alpha * x) + ((1 - alpha) * (acc[-1]))), arrayPopFront(data), [CAST(data[1], 'Float64')]) as ewma

┌─ewma─────────────────────────────────────────────────────────────┐
 [40,41.5,41.949999999999996,38.66499999999999,33.06549999999999] 
└──────────────────────────────────────────────────────────────────┘

5 - arrayMap, arrayJoin or ARRAY JOIN memory usage

Why do arrayMap, arrayFilter, and arrayJoin use so much memory?

arrayMap-like functions memory usage calculation.

In order to calculate arrayMap or similar array* functions ClickHouse® temporarily does arrayJoin-like operation, which in certain conditions can lead to huge memory usage for big arrays.

So for example, you have 2 columns:

SELECT *
FROM
(
    SELECT
        [1, 2, 3, 4, 5] AS array_1,
        [1, 2, 3, 4, 5] AS array_2
)

┌─array_1─────┬─array_2─────┐
 [1,2,3,4,5]  [1,2,3,4,5] 
└─────────────┴─────────────┘

Let’s say we want to multiply array elements at corresponding positions.

SELECT arrayMap(x -> ((array_1[x]) * (array_2[x])), arrayEnumerate(array_1)) AS multi
FROM
(
    SELECT
        [1, 2, 3, 4, 5] AS array_1,
        [1, 2, 3, 4, 5] AS array_2
)

┌─multi─────────┐
 [1,4,9,16,25] 
└───────────────┘

ClickHouse create temporary structure in memory like this:

SELECT
    array_1,
	array_2,
    x
FROM
(
    SELECT
        [1, 2, 3, 4, 5] AS array_1,
        [1, 2, 3, 4, 5] AS array_2
)
ARRAY JOIN arrayEnumerate(array_1) AS x

┌─array_1─────┬─array_2─────┬─x─┐
 [1,2,3,4,5]  [1,2,3,4,5]  1 
 [1,2,3,4,5]  [1,2,3,4,5]  2 
 [1,2,3,4,5]  [1,2,3,4,5]  3 
 [1,2,3,4,5]  [1,2,3,4,5]  4 
 [1,2,3,4,5]  [1,2,3,4,5]  5 
└─────────────┴─────────────┴───┘

We can roughly estimate memory usage by multiplying the size of columns participating in the lambda function by the size of the unnested array.

And total memory usage will be 55 values (5(array size)*2(array count)*5(row count) + 5(unnested array size)), which is 5.5 times more than initial array size.

SELECT groupArray((array_1[x]) * (array_2[x])) AS multi
FROM
(
    SELECT
        array_1,
        array_2,
        x
    FROM
    (
        SELECT
            [1, 2, 3, 4, 5] AS array_1,
            [1, 2, 3, 4, 5] AS array_2
    )
ARRAY JOIN arrayEnumerate(array_1) AS x
)

┌─multi─────────┐
 [1,4,9,16,25] 
└───────────────┘

But what if we write this function in a more logical way, so we wouldn’t use any unnested arrays in lambda.

SELECT arrayMap((x, y) -> (x * y), array_1, array_2) AS multi
FROM
(
    SELECT
        [1, 2, 3, 4, 5] AS array_1,
        [1, 2, 3, 4, 5] AS array_2
)

┌─multi─────────┐
 [1,4,9,16,25] 
└───────────────┘

ClickHouse create temporary structure in memory like this:

SELECT
    x,
    y
FROM
(
    SELECT
        [1, 2, 3, 4, 5] AS array_1,
        [1, 2, 3, 4, 5] AS array_2
)
ARRAY JOIN
    array_1 AS x,
    array_2 AS y

┌─x─┬─y─┐
 1  1 
 2  2 
 3  3 
 4  4 
 5  5 
└───┴───┘

We have only 10 values, which is no more than what we have in initial arrays.

SELECT groupArray(x * y) AS multi
FROM
(
    SELECT
        x,
        y
    FROM
    (
        SELECT
            [1, 2, 3, 4, 5] AS array_1,
            [1, 2, 3, 4, 5] AS array_2
    )
ARRAY JOIN
        array_1 AS x,
        array_2 AS y
)

┌─multi─────────┐
 [1,4,9,16,25] 
└───────────────┘

The same approach can be applied to other array* function with arrayMap-like capabilities to use lambda functions and ARRAY JOIN (arrayJoin).

Examples with bigger arrays:

SET max_threads=1;
SET send_logs_level='trace';

SELECT arrayMap(x -> ((array_1[x]) * (array_2[x])), arrayEnumerate(array_1)) AS multi
FROM
(
    WITH 100 AS size
    SELECT
        materialize(CAST(range(size), 'Array(UInt32)')) AS array_1,
        materialize(CAST(range(size), 'Array(UInt32)')) AS array_2
    FROM numbers(100000000)
)
FORMAT `Null`

<Debug> MemoryTracker: Current memory usage (for query): 8.13 GiB. 

size=100, (2*size)*size = 2*(size^2)

Elapsed: 24.879 sec. Processed 524.04 thousand rows, 4.19 MB (21.06 thousand rows/s., 168.51 KB/s.)

SELECT arrayMap(x -> ((array_1[x]) * (array_2[x])), arrayEnumerate(array_1)) AS multi
FROM
(
    WITH 100 AS size
    SELECT
        materialize(CAST(range(2*size), 'Array(UInt32)')) AS array_1,
        materialize(CAST(range(size), 'Array(UInt32)')) AS array_2
    FROM numbers(100000000)
)
FORMAT `Null`

<Debug> MemoryTracker: Current memory usage (for query): 24.28 GiB.

size=100, (3*size)*2*size = 6*(size^2)

Elapsed: 71.547 sec. Processed 524.04 thousand rows, 4.19 MB (7.32 thousand rows/s., 58.60 KB/s.)


SELECT arrayMap(x -> ((array_1[x]) * (array_2[x])), arrayEnumerate(array_1)) AS multi
FROM
(
    WITH 100 AS size
    SELECT
        materialize(CAST(range(size), 'Array(UInt32)')) AS array_1,
        materialize(CAST(range(2*size), 'Array(UInt32)')) AS array_2
    FROM numbers(100000000)
)
FORMAT `Null`


<Debug> MemoryTracker: Current memory usage (for query): 12.19 GiB.

size=100, (3*size)*size = 3*(size^2)

Elapsed: 36.777 sec. Processed 524.04 thousand rows, 4.19 MB (14.25 thousand rows/s., 113.99 KB/s.)

Which data types we have in those arrays?

WITH 100 AS size
SELECT
    toTypeName(materialize(CAST(range(size), 'Array(UInt32)'))) AS array_1,
    toTypeName(materialize(CAST(range(2 * size), 'Array(UInt32)'))) AS array_2,
    toTypeName(arrayEnumerate(materialize(CAST(range(size), 'Array(UInt32)')))) AS x

┌─array_1───────┬─array_2───────┬─x─────────────┐
 Array(UInt32)  Array(UInt32)  Array(UInt32) 
└───────────────┴───────────────┴───────────────┘

So each value use 4 bytes.

By default ClickHouse execute query by blocks of 65515 rows (max_block_size setting value)

Lets estimate query total memory usage given previous calculations.

WITH
    100 AS size,
    4 AS value_size,
    65515 AS max_block_size
SELECT
    array_1_multiplier,
    array_2_multiplier,
    formatReadableSize(((value_size * max_block_size) * ((array_1_multiplier * size) + (array_2_multiplier * size))) * (array_1_multiplier * size) AS estimated_memory_usage_bytes) AS estimated_memory_usage,
    real_memory_usage,
    round(estimated_memory_usage_bytes / (real_memory_usage * 1073741824), 2) AS ratio
FROM
(
    WITH arrayJoin([(1, 1, 8.13), (2, 1, 24.28), (1, 2, 12.19)]) AS tpl
    SELECT
        tpl.1 AS array_1_multiplier,
        tpl.2 AS array_2_multiplier,
        tpl.3 AS real_memory_usage
)

┌─array_1_multiplier─┬─array_2_multiplier─┬─estimated_memory_usage─┬─real_memory_usage─┬─ratio─┐
                  1                   1  4.88 GiB                             8.13    0.6 
                  2                   1  14.64 GiB                           24.28    0.6 
                  1                   2  7.32 GiB                            12.19    0.6 
└────────────────────┴────────────────────┴────────────────────────┴───────────────────┴───────┘

Correlation is pretty clear.

What if we will reduce size of blocks used for query execution?

SET max_block_size = '16k';

SELECT arrayMap(x -> ((array_1[x]) * (array_2[x])), arrayEnumerate(array_1)) AS multi
FROM
(
    WITH 100 AS size
    SELECT
        materialize(CAST(range(size), 'Array(UInt32)')) AS array_1,
        materialize(CAST(range(2 * size), 'Array(UInt32)')) AS array_2
    FROM numbers(100000000)
)
FORMAT `Null`

<Debug> MemoryTracker: Current memory usage (for query): 3.05 GiB.

Elapsed: 35.935 sec. Processed 512.00 thousand rows, 4.10 MB (14.25 thousand rows/s., 113.98 KB/s.)

Memory usage down in 4 times, which has strong correlation with our change: 65k -> 16k ~ 4 times.

SELECT arrayMap((x, y) -> (x * y), array_1, array_2) AS multi
FROM
(
    WITH 100 AS size
    SELECT
        materialize(CAST(range(size), 'Array(UInt32)')) AS array_1,
        materialize(CAST(range(size), 'Array(UInt32)')) AS array_2
    FROM numbers(100000000)
)
FORMAT `Null`

<Debug> MemoryTracker: Peak memory usage (for query): 226.04 MiB.

Elapsed: 5.700 sec. Processed 11.53 million rows, 92.23 MB (2.02 million rows/s., 16.18 MB/s.)

Almost 100 times faster than first query!

6 - assumeNotNull and friends

assumeNotNull and friends

assumeNotNull result is implementation specific:

WITH CAST(NULL, 'Nullable(UInt8)') AS column
SELECT
    column,
    assumeNotNull(column + 999) AS x;

┌─column─┬─x─┐
   null  0 
└────────┴───┘

WITH CAST(NULL, 'Nullable(UInt8)') AS column
SELECT
    column,
    assumeNotNull(materialize(column) + 999) AS x;

┌─column─┬───x─┐
   null  999 
└────────┴─────┘

CREATE TABLE test_null
(
    `key` UInt32,
    `value` Nullable(String)
)
ENGINE = MergeTree
ORDER BY key;

INSERT INTO test_null SELECT
    number,
    concat('value ', toString(number))
FROM numbers(4);

SELECT *
FROM test_null;

┌─key─┬─value───┐
   0  value 0 
   1  value 1 
   2  value 2 
   3  value 3 
└─────┴─────────┘

ALTER TABLE test_null
    UPDATE value = NULL WHERE key = 3;

SELECT *
FROM test_null;

┌─key─┬─value───┐
   0  value 0 
   1  value 1 
   2  value 2 
   3  null    
└─────┴─────────┘

SELECT
    key,
    assumeNotNull(value)
FROM test_null;

┌─key─┬─assumeNotNull(value)─┐
   0  value 0              
   1  value 1              
   2  value 2              
   3  value 3              
└─────┴──────────────────────┘

WITH CAST(NULL, 'Nullable(Enum8(\'a\' = 1, \'b\' = 0))') AS test
SELECT assumeNotNull(test)

┌─assumeNotNull(test)─┐
 b                   
└─────────────────────┘

WITH CAST(NULL, 'Nullable(Enum8(\'a\' = 1))') AS test
SELECT assumeNotNull(test)

Error on processing query 'with CAST(null, 'Nullable(Enum8(\'a\' = 1))') as test
select assumeNotNull(test); ;':
Code: 36, e.displayText() = DB::Exception: Unexpected value 0 in enum, Stack trace (when copying this message, always include the lines below):

If it’s possible to have Null values, it’s better to use ifNull function instead.

SELECT count()
FROM numbers_mt(1000000000)
WHERE NOT ignore(ifNull(toNullable(number), 0))

┌────count()─┐
 1000000000 
└────────────┘

1 rows in set. Elapsed: 0.705 sec. Processed 1.00 billion rows, 8.00 GB (1.42 billion rows/s., 11.35 GB/s.)

SELECT count()
FROM numbers_mt(1000000000)
WHERE NOT ignore(coalesce(toNullable(number), 0))

┌────count()─┐
 1000000000 
└────────────┘

1 rows in set. Elapsed: 2.383 sec. Processed 1.00 billion rows, 8.00 GB (419.56 million rows/s., 3.36 GB/s.)

SELECT count()
FROM numbers_mt(1000000000)
WHERE NOT ignore(assumeNotNull(toNullable(number)))

┌────count()─┐
 1000000000 
└────────────┘

1 rows in set. Elapsed: 0.051 sec. Processed 1.00 billion rows, 8.00 GB (19.62 billion rows/s., 156.98 GB/s.)

SELECT count()
FROM numbers_mt(1000000000)
WHERE NOT ignore(toNullable(number))

┌────count()─┐
 1000000000 
└────────────┘

1 rows in set. Elapsed: 0.050 sec. Processed 1.00 billion rows, 8.00 GB (20.19 billion rows/s., 161.56 GB/s.)

7 - Encrypt

WHERE over encrypted column

CREATE TABLE encrypt
(
    `key` UInt32,
    `value` FixedString(4)
)
ENGINE = MergeTree
ORDER BY key;

INSERT INTO encrypt SELECT
    number,
    encrypt('aes-256-ctr', reinterpretAsString(number + 0.3), 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx', 'xxxxxxxxxxxxxxxx')
FROM numbers(100000000);

SET max_threads = 1;

SELECT count()
FROM encrypt
WHERE value IN encrypt('aes-256-ctr', reinterpretAsString(toFloat32(1.3)), 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx', 'xxxxxxxxxxxxxxxx')

┌─count()─┐
       1 
└─────────┘

1 rows in set. Elapsed: 0.666 sec. Processed 100.00 million rows, 400.01 MB (150.23 million rows/s., 600.93 MB/s.)


SELECT count()
FROM encrypt
WHERE reinterpretAsFloat32(encrypt('aes-256-ctr', value, 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx', 'xxxxxxxxxxxxxxxx')) IN toFloat32(1.3)

┌─count()─┐
       1 
└─────────┘

1 rows in set. Elapsed: 8.395 sec. Processed 100.00 million rows, 400.01 MB (11.91 million rows/s., 47.65 MB/s.)

8 - sequenceMatch

sequenceMatch

Question

I expect the sequence here to only match once as a is only directly after a once - but it matches with gaps. Why is that?

SELECT sequenceCount('(?1)(?2)')(sequence, page ILIKE '%a%', page ILIKE '%a%') AS sequences
  FROM values('page String, sequence UInt16', ('a', 1), ('a', 2), ('b', 3), ('b', 4), ('a', 5), ('b', 6), ('a', 7))

2 # ??

Answer

sequenceMatch just ignores the events which don’t match the condition. Check that:

SELECT sequenceMatch('(?1)(?2)')(sequence,page='a',page='b') AS sequences FROM values( 'page String, sequence UInt16' , ('a', 1), ('c',2), ('b', 3));
1 # ??

SELECT sequenceMatch('(?1).(?2)')(sequence,page='a',page='b') AS sequences FROM values( 'page String, sequence UInt16' , ('a', 1), ('c',2), ('b', 3));
0 # ???

SELECT sequenceMatch('(?1)(?2)')(sequence,page='a',page='b', page NOT IN ('a','b')) AS sequences from values( 'page String, sequence UInt16' , ('a', 1), ('c',2), ('b', 3));
0 # !

SELECT sequenceMatch('(?1).(?2)')(sequence,page='a',page='b', page NOT IN ('a','b')) AS sequences from values( 'page String, sequence UInt16' , ('a', 1), ('c',2), ('b', 3));
1 #

So for your example - just introduce one more ’nothing matched’ condition:

SELECT sequenceCount('(?1)(?2)')(sequence, page ILIKE '%a%', page ILIKE '%a%', NOT (page ILIKE '%a%')) AS sequences
FROM values('page String, sequence UInt16', ('a', 1), ('a', 2), ('b', 3), ('b', 4), ('a', 5), ('b', 6), ('a', 7))